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Abstract. We introduce a mixed-effects model to learn spatiotempo-
ral patterns on a network by considering longitudinal measures dis-
tributed on a fixed graph. The data come from repeated observations
of subjects at different time points which take the form of measure-
ment maps distributed on a graph such as an image or a mesh. The
model learns a typical group-average trajectory characterizing the prop-
agation of measurement changes across the graph nodes. The subject-
specific trajectories are defined via spatial and temporal transforma-
tions of the group-average scenario, thus estimating the variability of
spatiotemporal patterns within the group. To estimate population and
individual model parameters, we adapted a stochastic version of the
Expectation-Maximization algorithm, the MCMC-SAEM. The model is
used to describe the propagation of cortical atrophy during the course of
Alzheimer’s Disease. Model parameters show the variability of this aver-
age pattern of atrophy in terms of trajectories across brain regions, age
at disease onset and pace of propagation. We show that the personaliza-
tion of this model yields accurate prediction of maps of cortical thickness
in patients.

1 Introduction

There is a great need to understand the progression of Alzheimer’s Disease (AD)
especially before the clinical symptoms to better target therapeutic interventions
[8]. During this silent phase, neuroimaging reveals the disease effects on brain
structure and function, such as the atrophy of the cortex due to neuronal loss.
However, the precise dynamics of the lesions in the brain are not so clear at the
group level and even less at the individual level. Personalized models of lesion
propagation would enable to relate structural or metabolic alterations to the
clinical signs, offering ways to estimate stage of the disease progression in the
pre-symptomatic phase. Numerical models have been introduced to describe the
temporal and the spatial evolution of these alterations, defining a spatiotemporal
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trajectory of the disease, i.e. a description of the changes in the brain over time,
such as lesion progressions, tissue deformation and atrophy propagation.

Statistical models are well suited to estimate distributions of spatiotemporal
patterns of propagation out of series of short-term longitudinal observations [3,6].
However, the absence of time correspondence between patients is a clear obstacle
for these types of approaches. Using data series of several individuals requires to
re-align the series of observations in a common time-line and to adjust to a stan-
dardized pace of progression. Current models either consider a sequential propa-
gation [16], without taking into account the continuous dynamics of changes, or
develop average scenarios [7,9]. Recently, a generic approach to align patients has
been proposed for a set of biomarkers in [15]: the temporal inter-subject variabil-
ity results from individual variations of a common time-line granting each patient
a unique age at onset and pace of progression. On top of the time-alignment of
the observations, there exists a spatial variability of the signal propagation that
characterizes a distribution of trajectories.

In order to exhibit a spatial representation of the alterations, we study med-
ical images or image-derived features taking the form of a signal discretized at
the vertices of a mesh, for instance the cortical thickness distributed on the mesh
of the pial surface or Standardized Uptake Value Ratio (SUVR) distributed on
the regular voxel grid of a PET scan. The spatial distribution of the signal is
encoded in a distance matrix, giving the physical distance between the graph
nodes. A sensible prior to include in the model is to enforce smooth variations of
the temporal profile of signal changes across neighbouring nodes, highlighting a
propagation pattern across the network as in [13]. Extending directly the model
in [15] may lead to an explosion of the number of parameters proportional to
the mesh resolution. At infinite resolution, the parameters take the form of a
smooth continuous map defined on the image domain. In this paper, we pro-
pose to constrain these maps to belong to a finite-dimensional Hilbert Space,
penalizing high frequency variations. In practice, these maps are generated by
the convolution of parameter values at a sparse set of control nodes on the net-
work with a smoothing kernel. The number of control nodes, whose distribution
is determined by the bandwidth of the kernel, controls the complexity of the
model regardless of the mesh resolution. Furthermore, the propagation of non-
normalized signal could not adequately be modeled by the same curve shifted in
time as in [15]. We introduce new parameters to account for smooth changes in
the profiles of changes at neighbouring spatial locations.

We introduce a mixed-effect generative model that learns a distribution of
spatiotemporal trajectory from series of repeated observations. The model eval-
uates individual parameters (time reparametrization and spatial shifts) that en-
ables the reconstruction of individual disease propagation through time. This
non-linear problem is tackled by a stochastic version of the EM algorithm, the
MCMC-SAEM [1,11] in a high-dimensional setting. It considers fixed-effects de-
scribing a group-average trajectory and random effects characterizing individual
trajectories as adjustment of the mean scenario. It is used to detect the cortical
thickness variations in MRI data of MCI converters from the ADNI database.
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Fig. 1: Manifold representation of the mesh observations (left). Orange dots are
patient real observations. The blue line is the reconstruction of the mean prop-
agation. The signal value at each node (right), parametrized by (p, t, v), allows
the reconstruction of the propagation over the network (orange lines)

2 Manifold-valued networks

In the following, we consider a longitudinal dataset y = (yi,j)1≤i≤p, 1≤j≤kiof p
individuals, such that the ith individual is observed at ki repeated time points
ti,1 < . . . < ti,ki . We assume that each observation yij takes the form of Nv ∈ N∗
scalar measures

(
(yi,j)1, ..., (yi,j)Nv

)
referred to as a measurement map.

Manifold-valued measurements distributed on a fixed graph
Let G = (V, E) be a non-oriented graph where V = (x1, ...,xNv

) is a set of
vertices of a mesh in R3 and E is a subset of pairs of vertices defining the
graph edges. We assume that G is a common fixed graph such that the kth
coordinate of each measurement map yij corresponds to the vertex xk ∈ V.
As the graph corresponds to measurements spatially distributed on a mesh, the
edges embed a spatial configuration. Therefore, any edge (xi,xj) is valued with
d, a geodesic distance on the graph, defining a distance matrix D such that for
all i, j ∈ {1, .., Nv}, Di,j = d(xi,xj). Each measurement map yi,j produces a
network (G,D,yi,j), i.e. a fixed graph with one-dimensional values associated to
each vertex and with distances associated to each edge.

We consider that the measurements of the patients at each node k corre-
sponds to observations of a signal function t 7→ γk(t) at particular time points.
Thus, the function t 7→ γ(t) = (γ1(t), ...,γNv

(t)) describes the evolution of the
signal over the whole network. We assume that each signal function is continuous
and that measurement map yi,j ∈ y lies in a space defined by smooth constraints,
as expected for bounded or normalized observations (eg. volume ratios, thickness
measures, SUVR). Therefore, the space of measurements is best described as a
Riemannian manifold [5, 12], leading to consider each function t 7→ γk(t) as a
one-dimensional geodesically complete Riemannian manifold (M, gM ) such that
all spatial observation yi,j is a point in the product manifold MNv . It follows
that for each i, j, (G,D,yi,j) is a manifold-valued network.
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Spatial smoothness of the propagation
Besides the temporal smoothness of the propagation, we expect the signal to be
similar for neighbour nodes. We consider that each node is described by Np pa-
rameters that parametrize the signal trajectory. In order to ensure smooth varia-
tions of the parameters values at neighbouring nodes, we assume that they result
from the interpolation of the parameter values at a sparse subset of uniformly
distributed nodes VC = (xd1 , ...,xdNc

), called control nodes. For each parameter
p, potentially estimated at each node, the control nodes define a parameter evalu-
ation function p(x) encoding for all the nodes: ∀x ∈ V, ∀y ∈ VC , ∀i ∈ {1, . . . , Nc}
p(x) =

∑NC

i=1K(x,xdi)βi and p(y) = py where the (βi)1≤i≤Nc are the new model
parameters and K is a Gaussian Kernel such that ∀x,y ∈ VK(x,y) = f(d(x,y)σ ),
d being the geodesic distance on the graph and σ the kernel bandwidth.

This convolution guarantees the spatial regularity of the signal propagation.
Moreover this smooth spatial constraint enables a reduction of the number of pa-
rameters, reducing the dimensional complexity from Np independent parameters
at each node, to Np parameters only at the control nodes.

3 The statistical model

A propagation model
Given a set of manifold-valued networks (G,D,y), the model describes a group-
average trajectory in the space of measurements, defined by a geodesic γ that
allows to estimate a typical scenario of progression. Individual trajectories derive
from the group-average scenario through spatiotemporal transformations: the
exp-parallelization and the time reparametrization.

First, to describe disease pace and onset specific to each subject, we intro-
duced a temporal transformation, called the time-warp, that is defined, for the
subject i, by ψi(t) = αi(ti,j − τi − t0) + t0 where t0 is the reference time-point
in the space of measurements. The parameter τi corresponds to the time-shift
between the mean and the individual age at onset and αi is the acceleration
factor that describes the pace of an individual, being faster or slower than the
average. This time reparametrization allows to reposition the dynamics of the
average scenario in the real time-line of the ith individual.

The exp-parallelization allows to translation the observations in the space
of measurements, from the mean scenario to individual trajectories, encoding
a variation in the trajectory of changes across the nodes of the graph. This
exp-parallelization is handled by a family of individual vectors (wi)1≤i≤p, called
space-shifts. As shown on Figure 1 (left), the orange dots refer to individual
observations in the space of measurements. The group-average trajectory esti-
mated from the longitudinal measurements corresponds to the blue line. The
space shifts characterize a spatial shift perpendicular to v0 that describes the
velocity of the mean scenario.

Finally, the parameters (αi, τi,wi) allow the reconstruction of the individual
trajectories from the mean scenario of propagation.
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Given a noise εi,j
i.i.d.∼ N (0, σ2IdNv

), the mixed-effect model writes, for a ar-
bitrary vertex function γk(t):

(yi,j)k = γk

(
(wi)k
γ̇k(t0)

+ αi(ti,j − t0 − τi) + t0

)
+ (εi,j)k (1)

Parameters estimation with the MCMC-SAEM algorithm
To reconstruct the long-term scenario of the disease propagation, we estimate
the parameters of the group-average trajectory θ = ((βiparam)1≤i≤Nc,1≤j≤Np

, σ)
using a maximum likelihood estimator. The random-effects z = (zi)1≤i≤p =
(wi, αi, τi)1≤i≤p are considered as latent variables, whose distributions charac-
terize the variability of the individual trajectories. Due to the non-linearity in Eq.
(1), we use a Stochastic Approximation Expectation Maximization [4] coupled
with a Monte-Carlo Markov Chain sampler (MCMC-SAEM) [10]. Let θ(k) be the
current estimation of the parameters and z(k) the current iterate of the Markov
chain of the latent variables. The algorithm alternates between a simulation step,
a stochastic approximation step and a maximization step, until convergence [1].
The simulation uses an adaptive version [2] of the Hasting Metropolis within
Gibbs sampler to draw z(k+1) from (z(k),y,θ(k)). This algorithm was chosen
as it handles non-linear mixed effects models [11] with proven convergence and
consistent estimations in practice.

Model instantiation
As many measurements correspond to positive values (eg. the cortical thickness,
volume ratios), we consider in the following the open interval M =]0,+∞[ as
a one-dimensional Riemannian manifold equipped with a Riemannian metric
g such that for all p ∈ M and for all (u, v) ∈ TpM , gp(u, v) = uv/p2. With
this metric and given k ∈ {1, . . . , Nv}, M is a geodesically complete Rieman-
nian manifold whose geodesics are of the form t 7→ γk(t) = pk exp(

vk
pk
(t − tk))

where pk ∈ M , tk ∈ R, vk ∈ TpkM . These parameters are represented on Fig-
ure 1 (right) at two nodes where the decrease of the signal varies spatially. For
identifiability reasons, we choose to fix the parameters tk among the nodes, lead-
ing to a shared parameter t′0 such that for all k ∈ {1, . . . , Nv} tk = t′0. As t′0
can be arbitrarily chosen in R, we fix t′0 = t0 defined in Section 3. Consider-
ing the interpolation functions introduced in Section 2 and the fact that the
parameters (pkj ) are (pk, vk), it leads to define p(x) =

∑NC

i=1K(x,xdi)β
i
p and

v(x) =
∑NC

i=1K(x,xdi)β
i
v

Finally, the model defined in (1) rewrites:

(yi,j)k = p(xk) exp

(
(wi)k
p(xk)

+
v(xk)

p(xk)
αi(ti,j − t0 − τi)

)
+ (εi,j)k (2)

such that θ = (t0, (β
i
p)1≤i≤Nc , (β

i
v)1≤i≤Nc , σ) and z = (wi, αi, τi)1≤i≤p
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Fig. 2: Cortical thickness at 65, 68, 71 and 74 years old of the mean propaga-
tion (first rows). Effect of the space-shift wi (fourth row), then with temporal
reparametrization αi, τi (fifth row) on the cortical thickness.

4 Experimental results

Data
We used this model to highlight typical spatiotemporal patterns of cortical atro-
phy during the course of Alzheimer’s Disease from longitudinal MRI of 154 MCI
converters from the ADNI database, which amounts for 787 observations, each
subject being observed 5 times on average. We aligned the measures on a com-
mon atlas with FreeSurfer [14] so that the measurement maps are distributed on
the same common fixed-graph G which is constituted of 1827 nodes that map the
surface of the left pial surface. Out of the vertices, we selected 258 control nodes
uniformly distributed over the surface. They encode the spatial interpolation of
the propagation. The distance matrix D is defined by a geodesic distance on G.

Cortical thickness measurements We used the model instantiation defined
in Section 3 to characterize the cortical thickness decrease. Multiple runs of
30.000 iterations (∼4hours) of this MCMC-SAEM lead to a noise standard de-
viation σ ' 0.27mm with 90% of the data included in [1.5, 3.6] mm. The mean
spatiotemporal propagation, described on the first three rows of the Figure 2
as the cortical thickness at respectively 65, 68, 71 and 74 years old shows that
the primarily affected area is the medial-temporal lobe, followed by the tem-
poral neocortex. The parietal association cortex and the frontal lobe are also
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(a) Real observation of the cortical thick-
ness (right) and its model reconstruction
(left)

(b) Relative error between the observation
and its reconstruction plotted on the mesh
(left) and its histogram (right)

Fig. 3: Comparison of an observation and its reconstruction by the model

subject to important alterations. On the other side, the sensory-motor cortex
and the visual cortex are less involved in the lesion propagation. These results
are consistent with previous knowledge of the Alzheimer’s Disease effects on
the brain structure. As the model is able to exhibit individual spatiotemporal
patterns with their associated pace of progression, the fourth and fifth rows of
the Figure 2 represent consecutively the effect of the parallel shifting and of the
time reparametrization on the cortical thickness atrophy. The figure 3a shows
the real cortical thickness of a subject and the reconstruction predicted by the
model. The relative error and its histogram are represented on Figure 3b. The
reconstruction is coherent to the real observation, the remaining error represents
essentially an unstructured noise that we precisely try to smooth out.

5 Discussion and perspectives

We proposed a mixed-effect model which is able to evaluate a group-average spa-
tiotemporal propagation of a signal at the nodes of a mesh thanks to longitudinal
neuroimaging data distributed on a common network. The network vertices de-
scribe the evolution of the signal whereas its edges encode a distance between the
nodes via a distance matrix. The high dimensionality of the problem is tackled
by the introduction of control nodes: they allow to evaluate a smaller number
of parameters while ensuring the smoothness of the signal propagation through
neighbour nodes. Moreover, individual parameters characterize personalized pat-
terns of propagation as variations of the mean scenario. The evaluation of this
non-linear high dimensional model is made with the MCMC-SAEM algorithm
that leads to convincing results as we were able to highlight areas affected by
considerable neuronal loss: the medial-temporal lobe or the temporal neocortex.

The distance matrix, which encodes here the geodesic distance on the cortical
mesh, may be changed to account for the structural or functional connectivity
information. In this case, signal changes may propagate not only across neigh-
bouring locations, but also at nodes far apart in space but close to each other
in the connectome. The model can be used with multimodal data, such as PET
scans, introducing numerical models of neurodegenerative diseases that could in-
form about the disease evolution at a population level while being customizable
to fit individual data, predicting stage of the disease or time to symptom onset.
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